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Efficient energy harvesting, conversion and recycling technologies are
crucial for addressing the challenges faced by modern societies and the
global economy. The potential of harnessing mid-infrared (mid-IR) thermal
radiation as a pervasive and readily available energy source has so
far not been fully exploited, particularly through bioinspiration. In this
article, by reviewing existing photon-based strategies and the efficiency of
natural systems in harnessing light and thermal radiation, I highlight the
promising role of bioinspiration in enhancing energy capture, conversion
and recycling. Natural photonic structures found in various organisms,
including insects, birds and plants, exhibit sophisticated optical properties
that can be leveraged for energy-efficient applications. These developments
pave the way for future research and innovation in bioinspired energy
solutions. Ultimately, they contribute to the pursuit of a sustainable and
environmentally conscious future by harnessing the beauty of nature’s
designs to meet humankind’s energy needs.

1. Introduction
Addressing the significant challenges faced by modern global society and the
world economy, the advancement of efficient energy harvesting and recycling
technologies [1–3] stands as a prominent area of research on a global scale.
Mid-infrared (mid-IR) thermal radiation, namely, with a wavelength ranging
from 3 to 8 μm, represents a pervasive and readily available energy source.
This is not only due to the long illumination of some parts of the Earth by
the Sun but also because many machinery, engines and industrial processes
dissipate energy in the form of heat radiation, distinct from thermal conduc-
tion or convection mechanisms.

While the primary energy source may vary in its environmental impact,
the recycling of this ‘wasted’ energy presents a sustainable approach to
converting radiative heat losses into diverse forms of energy. Numerous
mechanical components found in machinery, engines, industrial processes
and even household systems generate mid-IR thermal emissions at moder-
ately elevated temperatures, typically ranging from 150°C to 950°C. These
emissions are an intrinsic by-product of the regular functioning of these
components and constitute an unavoidable energy loss. The prospect of
harnessing this radiative heat loss is compelling, as it offers the opportunity to
transform it into electrical power, effectively enabling devices to utilize their
own recycled radiative heat loss for enhanced functionality.

Photon-based strategies have already played a crucial role in harnessing
solar energy, enhancing the performance of energy conversion devices [4–
12]. For instance, devices designed for solar light trapping have effectively
increased the efficiency of photovoltaic (PV) cells and thermal photovoltaic
(TPV) cells. Similar photonic devices are instrumental in augmenting the
efficiency of solar thermal panels, or in energy harvesting for thermoelectric
generators (TEG), artificial photosynthesis, and photocatalysis.
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In nature, numerous biological organisms have developed highly efficient mechanisms to harness thermal radiation, a crucial
adaptation for their survival. Over millions of years of evolution, these natural systems have honed specialized characteristics
to maximize their radiation harvesting abilities [13,14]. Consequently, certain structures within their integuments have become
increasingly inspiring for the development, design and production of energy-efficient materials [14–17]. Bioinspiration emerges
as a powerful and promising strategy in this context.

Natural photonic structures found in various animals, including insects, birds and fish, are examples of effective thermal
radiation collectors [15,17,18]. In addition, this type of structure exhibits a diverse array of properties, such as structural
colours (resulting from light interference in nanostructures) [13,14,19,20], antireflection features [16,18,21], thermoregulation
mechanisms [22–26], light-trapping capabilities [27–30] and enhanced light-extraction methods [31]. These properties emerge
from the interaction between radiation and structures composed of biopolymers such as chitin, keratin, collagen or cellulose,
sometimes in combination with pores.

The existence of these naturally occurring radiation management systems challenges the human imagination. While human
beings have access to a wide range of materials, human designs sometimes fall short in complexity compared with these
remarkable natural structures. Identifying and comprehending these natural photonic devices not only expands human
understanding but also empowers engineers and materials scientists to conceptualize new ideas and explore potential tech-
nological applications through bioinspired principles [14–17]. These exciting possibilities have captivated the attention of
researchers worldwide. Despite the development of artificial intelligence, bioinspiration remains a guiding force in the quest for
novel technological applications. The convergence of both approaches holds promise for unprecedented advancements in this
field.

In this article, I first review previously investigated cases of photonic structures enhancing electromagnetic-wave absorption
(also known as structural absorption) in natural organisms across the ultraviolet (UV), visible and infrared (IR) range. This is
because the dimensions of a visible light absorber occurring in nature may be adjusted to another range such as IR through a
bioinspiration approach due to the scalability of Maxwell’s equations.1 Finally, I review examples of bioinspired IR absorbers
from the literature.

2. Light absorption enhanced by photonic structures in natural organisms
The management of electromagnetic radiation and thermoregulation are pivotal functions essential for the survival or benefit of
various natural organisms, including plants, insects and birds [23–26,32–37], whether endotherms (organisms able to maintain
their body temperature through their metabolisms), mesotherms (organisms with some metabolic strategies of heat production
without any proper metabolic heat control) or ectotherms (organisms requiring external heat sources) [38]. For instance,
photosynthesis implies absorbing visible radiation from the Sun, whereas thermoregulation of ectothermic animals involves a
subtle trade-off between radiation absorption and thermal emission in the near-infrared (near-IR) part of the electromagnetic
spectrum. Photonic structures may play roles in the management of such thermal radiation. For instance, iridescent butterflies
were reported to exhibit in general an absorptance2 higher than that of non-iridescent species [39]. Other striking illustrations
are the photonic structures occurring in the super-black feathers of the bird of paradise (as depicted in figure 7) [36], as well
as in the scales covering the black wings of insects like the Magellan birdwing and the Meander prepona butterflies [23,27].
These feathers and wings exhibit remarkably high energy absorption properties within the spectral range of solar irradiance,
encompassing the mid-IR spectrum in some instances. Often, in such natural integument, incident light is absorbed by pigments
including melanin [40–43]. Nanostructures, operating at micro- and nano-metre length scales, yield fascinating opportunities for
both light and thermal radiation harvesting.

2.1. Wings of lepidopterans
Insects such as lepidopterans, the taxonomic order encompassing the ethereal beauty of butterflies and the enigmatic allure of
moths, are typically ectotherms, which means that their metabolisms rely on environmental heat sources. Harvesting incident
energy appears crucial for these species. The phylogenetic diversity of structures giving rise to ultra-black coloration occurring
in the order Lepidoptera was recently analysed in detail (figure 1) [44]. All these structures present some longitudinal ridges
connected by cross ribs in the upper lamina of the scales, forming two-dimensional networks of quasi-periodic holes. The
resulting high surface area was described as increasing light absorption by underlying cuticular melanin and reducing reflection
[44,45]: whatever the size and shape of the holes—honeycomb, chevrons or rectangles—scales giving rise to ultra-black visual
appearances exhibit steeper ridges as well as deeper and wider trabeculae (namely, pillars connecting the upper and basal
laminae of a scale) than scales with some regular black or brown colour. Through numerical modelling, these features were
shown to play a significant role in reducing light reflection [44,45]. Furthermore, coating these structures with gold does not
lead to an increase in light reflectance, unlike regular black or brown butterfly wings. This experimentally demonstrates the
photonic origin of the related light harvesting [44].

1The scaling properties of Maxwell’s equations allow the dimensions of a photonic structure to be adjusted for operation at different wavelengths just by proportion-
ally scaling the dimensions or material properties about the change in wavelength.

2The absorptance A corresponds to the relative light intensity absorbed by a given medium or structure with respect to the incident intensity. It is defined asA = 1 − R − T, where R and T correspond to the reflectance (relative reflected light intensity) and the transmittance (relative transmitted light intensity), respectively.
This quantity is bounded to 1.
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In the scales covering the wings of the male Papilio ulysses butterfly, similar complex photonic structures were found to
play a role in intensifying the dark areas [28], in addition to the porous multi-layer structure producing the bright blue colour
through interference [46]. They were described as scattering light towards the ridges and the interior of the scale, leading to
a longer optical path, resulting in a higher light absorption by the pigments distributed within the scale material. For matt
black scales, the absorption reduced from 95% to 55% upon contact with bromoform serving as index-matching fluid, while for
lustrous black scales, it decreased from 90% to 70% (figure 2). Ridges were, however, demonstrated through simulation to have
a neglected role in visible-light absorption of the ultra-black scales of Pachliopta aristolochiae [47].

The wings of Troides magellanus butterfly, the Magellan birdwing, present a captivating spectacle of optical properties,
including light diffraction and controlled fluorescence emission on their hindwings [48–51]. It inhabits the Philippines and
Taiwan’s Orchid Island. Renowned for their impressive size and striking appearance, the forewings showcase a remarkable
98% absorption of visible light as well as reveal two distinctive peaks in the IR spectrum [27]. As detailed in the following
paragraph and figure 3, the presence of chitin imparts the wings with these robust absorption peaks at 3 and 6 μm due to C=O
vibrations, strategically positioned within the wavelength range where a black body emits radiation at 40°C, enabling radiative
cooling.3 The architecture of the Magellan birdwing consists of five major elements [27]: a roof-like structure on which a series
of ridges are located; holes in the so-called ‘spacer’ structures separating the ridges; and pillars joining the upper membrane to
the lower membrane of the wing. A similar structure was also found in the case of the related Troides aeacus [52]. Comparison of
numerical simulations between the photonic structure and a non-structured flat slab with an equal volume of material showed
a 10% increase in electromagnetic radiation absorption and a 17% increase in emissivity at 40°C [27]. This unique combination
of optical characteristics suggests that the Magellan birdwing has evolved to manage efficiently both visible and IR light,
underscoring the sophisticated adaptation of these butterfly wings for light and thermal radiation purposes.

A related thermoregulation was demonstrated in the case of Archaeoprepona meander, the Meander prepona, a tropical
butterfly species (figure 3) [23], as well as later on in various butterfly species [53]. These insects employ a sophisticated
mechanism to manage their body temperature effectively within a given range such as 36–40°C [23] or 20–50°C [53], depending
on the species. The intricate structure of their wings such as the black wings of Meander prepona serves as a remarkable
example of nature’s engineering prowess. The scale structures on the wings, in addition to melanin pigments, play a crucial
role in harnessing solar energy efficiently, absorbing approximately 95% of the visible solar spectrum (figure 3c) [23], akin
to the phenomenon described in the cases of Papilio ulysses and the Magellan birdwing hereabove. In the near-IR range, the
absorptance intensity decreases down to less than 2%, ensuring low thermal emissivity, apart from the absorptance peaks at 3
and 6 μm. The 6 μm emissivity peak plays a crucial role in thermoregulation [23]. At temperatures below 40°C, the black-body
peak is located at a longer wavelength (figure 3c). It allows the wing to harvest heat effectively while maintaining low thermal
emissions. When temperatures exceed 40°C, a significant overlap between the black-body spectrum and the 6 μm peak appears
(figure 3c), leading to higher thermal emission (namely, radiative cooling) and contributing to the butterfly’s fine-tuned response
to thermal challenges in its habitat. This thermoregulation mechanism could be employed in applications such as solar energy
harvesting as it can help maintain the devices within an optimal temperature range.

The role of ultra-black colours in butterflies remains the subject of speculation. However, it was hypothesized that they
enhance the contrast in the visual signals, as ultra-black areas are always located next to bright areas [44]. Such visual contrast
would have implications in terms of aposematism or intraspecific communication.

In addition to structured scales covering the ventral and dorsal sides of lepidopteran wings, many species including
butterflies Greta spp., the moth Cacostatia ossa, and the moth Cephonodes hylas display some highly transparent scale-less wings
with antireflection properties through photonic structuring of the wing membranes [16,18,54–60]. This structuring curtails
reflection of incident light to levels below 2% across the entire visible spectrum through electromagnetic impedance matching.
It consists of a lattice of dome-shaped protuberances, also known as nipples (figure 4). The underlying principle behind this
antireflection effect lies in the gradual refractive-index matching4 between the air and the wing membrane, typically composed
of chitin. If the protuberances are spaced by less than the incident wavelength, typically less than 200 nm, the non-zero
diffraction orders are evanescent. The protuberance structure can be regarded as a slow variation of the effective refractive
index along the normal to the wing membrane. Depending on the species, the protuberance lattice can be very well ordered
such as the hexagonal compact array in the wings of C. hylas [18,54,55] and Hemaris fuciformis [56,60] hawkmoths or more
disordered such as the wings of C. ossa moth (figure 4) [16,57] and the ones of Greta spp. glasswing butterflies [58,59]. Interest-
ingly, a disorder in the protuberance height, width and position was found to increase the transparency properties in the case of
G. oto glasswing butterfly [59]. Beyond the order of lepidopterans, antireflection structures manifest in the wings of odonatans,
such as Aeshna cyanea dragonfly [60,61], the American rubyspot damselfly Hetaerina americana [58] and Vestalis amabilis damselfly
[60], or even in hemipterans like cicadas [16,60,62–65]. In addition, such nipple arrays were observed on the surfaces of
compound-eye corneas of several arthropods [21,56,66–68]. They are often referred to as moth-eye structures. A comparative
study of 19 species of butterflies led to the classification of the arrays into three categories according to their morphologies:
conical, paraboloidal and Gaussian. The paraboloid profile with protuberances almost touching each other was found to exhibit
the lowest reflectance, with the effective refractive index varying quasi-linearly with depth [21]. Highly antireflective wings
in insects are often reported to play a likely role in crypsis [63,64]. Similarly, nipple arrays on the surfaces of compound
eyes are assumed to improve camouflage under daylight and improve night vision [66,67]. In general, some of such lattices

3Radiative cooling is the physical process through which every body emits thermal radiation, cooling down due to a loss of heat. It is described by Planck’s Law.
4Gradual refractive-index matching reduces light reflection, as any incident light experiences no abrupt change in refractive index. This can be approximated by a
stack of thin layers with a slightly larger (or lower) refractive index. With a sufficiently small contrast in refractive index between two adjacent layers, very low light
intensity is reflected.
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of protuberances were reported to combine antireflection with hydrophobic properties [16,63,64,69–72], bactericidal activity
[72–76] and fluorescence emission [60,77–80]. In the case of cicadas, it was shown that the protrusions could be approximated
by truncated cones under hemispheres [16,64]. The cones gave rise to impedance matching and high antireflection, whereas
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Figure 1. Diverse structures of scales exhibit ultra-black coloration within the order Lepidoptera. They typically comprise holes located in between the scales' ridges
with various sizes and shapes: honeycomb (a), chevrons (b) and rectangles (c–f), as observed by scanning electron microscopy (SEM) with wings of Trogonoptera
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Euploea klugi nymphalid (f). Scale bars: 1 μm (a–f). This figure was reproduced from [44], License CC-BY-4.0.

95

90

85

80

75

70

65

60

55

50

450 475 500 525 550 575 600 625

wavelength (nm)

ab
so

rp
ti

o
n

 (
%

)

scales in bromoform

scales in air
(a) (b)

(d)

(f)(e)

(c)

Figure 2. The male Papilio ulysses butterfly (a) exhibits some black areas on its wings. Upon contact with index-matching fluid (here, bromoform), the absorption
spectra exhibit significantly lower intensities (b). They were measured at normal incidence with both lustrous (circles) and matt (triangles) black scales. Electron
microscopy (c,d: SEM; e,f: TEM) allowed the observation of the structures of the lustrous (c,e) and matt (d,f) black scales. Scale bars: 3 μm (c), 2 μm (d); 2 μm (e,f); inset,
300 nm. These figures were reproduced from W. van Aken (a), https://commons.wikimedia.org/wiki/File:CSIRO_ScienceImage_3831_Ulysses_Butterfly.jpg, License
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the cones favoured hydrophobicity. Fluorescence arises from fluorescent proteins—typically resilin—embedded within the
membrane material [60,77–80].

2.2. Elytra of beetles
The blue-grey elytra of Rosalia alpina longhorn beetle (family Cerambycidae) exhibit large black spots (figure 5). The micro- and
nano-structured setae that cover these elytra contribute, on one side, to the camouflage of this beetle on beech barks and, on the
other side, to thermoregulation by allowing quick heating of the body to the optimal temperature and dissipating excess heat
through IR emission to prevent overheating [81,82], akin to the wings of some butterflies described in the previous section. The
setae occurring in the black spots enhance visible-light absorption by light trapping, whereas the setae of all the elytra enable
thermoregulation. The former are inclined scales, touching neighbours at the tips and forming tent-like architectures with 1 μm
period and 100 nm period grating patterns (figure 5a) [81,82]. The setae occurring on the blue-grey areas consist of hairs [81,82]
(figure 5b). Through optical modelling based on scanning electron microscopy (SEM) observations, the light-trapping role of the
scales was demonstrated [81,82]. Several reflections on opposite inclined patterned scales and high concentrations of melanin
in these scales account for the high-absorption properties. In addition, the scales and the hairs exhibit absorption (and hence
emission) enhancement in the mid-IR range [81,82].

More recently, Vasiljević and co-workers unveiled a combination of lenslets and micrometre-sized multi-layered
spherical black elements located within the elytra of the Morimus asper funereus  longhorn beetle (family Cerambycidae)
[83], which also display black spots on a grey surface. However, in this case, both areas, black and grey, look identical
when observed with a thermal camera. The authors concluded from finite element method (FEM) simulations that the
combined action of the lenslets and the multi-layered spherical elements focuses IR radiation on microchannels containing
haemolymph.

Finally, arrays of ellipsoidal and randomly located micropillars (figure 6a–c) were reported on the elytra of Euprotaetia
inexpectata scarab beetle (family Scarabaeidae) [84]. They enhance light absorption by a combination of Mie scattering and
optical focusing. This way, incident light reaches absorbing pigment—namely, melanin—located within the elytra, giving rise to
an absorptance up to 99.5% and a reflectance of 0.1% at 400 nm (figure 6d).

2.3. Bird feathers
The ultra-black plumage occurring in some species of birds of paradise within the family Paradisaeidae has captivated
researchers due to its unparalleled darkness, reaching absorption levels of up to 99.95%. This phenomenon, elucidated by
McCoy and colleagues, is a result of structural absorption rather than pigmentation (figure 7) [36]. These feathers appear
even darker than typical black feathers due to a significant reduction in specular reflection, as measured through directional
reflectance ranging from a mere 0.05% to 0.31%. The secret lies in the microstructure of the feathers, featuring barbules curved
up that are tilted vertically by ca 30° with respect to the normal, in the direction of the feathers’ distal tip. This unique
arrangement enhances multiple light scattering, creating regularly spaced cavities with dimensions of 5−30 μm in width and
200−400 μm in depth. Astonishingly, the super-black effect is most pronounced when looked at from the distal direction,
aligning perfectly with the perspective of a female observing a male. The cavities present a directional reflectance bias, making
the feathers even darker when viewed from the distal direction. This natural adaptation showcases the fascinating ways in
which birds of paradise have evolved to achieve remarkable visual effects in their plumage.
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2.4. Cuticle of Maratus jumping spiders
Jumping spiders, specifically the male members of the genus Maratus, commonly referred to as peacock spiders, have evolved
a fascinating display strategy to attract their female counterparts (figure 8a). These spiders exhibit a striking combination of
brilliant colours arising from pigments or photonic structures [86] and velvety black areas [85] on their bodies. These black
regions, described as ultra-black [85], reflect less than 0.5% of light, reaching intensities as low as 0.35% in the case of Maratus
karrie due to microstructures, including densely packed cuticular bumps resembling microlens arrays (figure 8c,d). In addition,
M. karrie displays some black scales resembling brushes (figure 8e,f). Optical modelling revealed a delicate balance between
minimizing light reflection from the surface and maximizing absorption by melanin (figure 8g). Interestingly, McCoy and
co-workers proposed that this ultra-black followed a convergent evolution for the success of these spiders and the birds of
paradise in the competitive realm of sexual selection [85].

2.5. Skin of West African Gaboon viper
The Gaboon viper Bitis rhinoceros, native to West Africa, exhibits a stunning camouflage in its natural habitat, thanks to its
intricate skin pattern [87]. The geometrically arranged velvet black spots, interspersed with pale and light brown regions
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(figure 9), seamlessly blend into the diverse light and shade patterns of the forest ground under the canopy. Observations
revealed that the blackness of the viper’s scales is primarily derived from a hierarchical structure characterized by densely
packed, leaf-like microstructures covered with nanoridges. Under microscopic scrutiny, even the areas in between black scales
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spectra (c,d) of standard black (solid lines) and ultra-black (dotted lines) feathers are compared, showcasing total (namely, the sum of diffuse and specular
components) reflectance (c) as well as specular reflectance at normal incidence (d). Scale bar: 50 μm (b). These figures were reproduced from [36], License CC-BY-4.0.
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female spider. Scale bars: 30 μm (c), 10 μm (d), 50 μm (e) and 10 μm (f). These figures were reproduced from Graham Wise (a), https://commons.wikimedia.org/wiki/
File:Maratus_nigromaculatus_(14585680722).jpg, License CC-BY−2.0 and from [85] (b-g), License CC-BY-4.0.
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exhibit nanoridge striations (figure 9). Reflectance spectra analysis demonstrates that both black and pale scales have nearly flat
profiles across the visible range, with a notable peak around 880 nm (figure 9). Intriguingly, applying an Au–Pd coating to the
black scales preserves the black colour and further diminishes reflectance (figure 9). This finding supports the idea that the
viper’s original surface works as an effective light-trapping device, utilizing multiple reflections of light. The metallic coating
further enhances light trapping via light reflections on the metal-coated surfaces. Modelling of diffuse reflection using Lamber-
tian symmetric V-shaped cavities validated the proposed light-trapping mechanism and elucidated the angular dependence of
reflectance spectra in pale scales [87]. However, the black scales exhibit a distinct angular characteristic, lacking a specular
reflection peak and displaying a gradual decrease in reflectance intensity with increasing emerging angles. This unique angular
behaviour imparts a non-glossy visual appearance to the velvet black, attributed to the more isotropic arrangement of scale
structure.

2.6. Plants and algae
In the realm of plants, the surfaces of some petals and leaves reveal a mesmerising array of structures optimized to enhance
light harvesting (figure 10). The interplay of antireflection and light trapping mechanisms unfolds through the subtle architec-
ture of conical-shaped epidermal cells [34,88–90]. As sunlight encounters these structures, a gradual increase in the effective
refractive index occurs, giving rise to antireflection akin to the cones found on the surfaces of moth eyes and cicada wings. In
some plants, additional nanowrinkles were demonstrated to reduce light reflection [34,88]. In addition to antireflection, light
redirection extends the path length within plant integuments, contributing to light trapping. The epidermal cells of flowers
were reported to function as lenses and conduct incident light into the integuments comprising pigments [89,91,92]. It was also
shown that the cone shape of their petals varies, reflecting the plant’s strategic adaptation to either scatter or absorb incident
tUV waves, with shorter cones in the former, and taller ones in the latter, respectively [93]. This adaptive variability plays a
pivotal role in enhancing light capture for crucial processes such as photosynthesis and contributes to the vivid coloration of
these botanical wonders, especially in environments with limited light availability.

Venturing into the microscopic world, diatoms, unicellular algae encased in intricate silica frustules (namely, the hard porous
structures of diatoms), offer a different yet equally captivating story of solar energy harvesting [94]. The case of Coscinodiscus sp.
stands out, with its frustule comprising three layers—termed cribellum, cribrum and the internal plate—each composed of thin
slabs housing hexagonal arrays of disk holes. The size and spacing of these holes vary from layer to layer, forming a hierarchical
structure that has been finely tuned for optimal light trapping and photosynthesis.

The blue iridescent epidermal chloroplasts occurring in some plant leaves, such as those in shade-dwelling Begonia spp.
and Selaginella erythropus, display intricate multi-layers that significantly enhance light absorption [35,95–97]. Chloroplasts,
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Figure 9. The West African Gaboon viper, Bitis rhinoceros, (a) exhibits an effective camouflage pattern with velvety black, light brown and pale hue areas on its skin.
Reflectance spectra (b) highlight the characteristics of black dorsal scales (solid black line), Au–Pd coated black dorsal scales (dotted black line), pale dorsal scales
(solid grey line), Au–Pd coated pale dorsal scales (dotted grey line) and ventral scales (dashed black line). Unlike pale scales (solid black line), black scales (solid grey
line) do not specularly reflect light (c): with a 700 nm incident light at 45° with respect to the normal to the skin surface, light reflectance decreases with the detection
angle (c). The microstructures of the scales can be imaged by SEM (d–j). The black scales are densely packed and resemble leaves marked with an arrow (P) in (d). They
are covered with small ridges (e–g) with spinules indicated with an arrow (S) in (g). The pale scales have a more simple pattern (h), exhibiting pits (i,j). These figures
were reproduced from [87], with permission from Springer Nature.
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crucial plant organelles facilitating photosynthesis by absorbing incident light via chlorophyll, play a pivotal role in converting
light energy into biochemical energy as adenosine triphosphate (ATP) and nicotinamide adenine dinucleotide phosphate
(NADPH). Particularly, the initial light-dependent phase of photosynthesis takes place within the absorbing thylakoid tissues of
chloroplasts. Two distinct types of chloroplasts are of interest concerning photonics and enhanced light absorption: iridoplasts
and bizonoplasts [98]. Iridoplasts, exclusive to some plants such as the leaves of Begonia, possess photonic structures consist-
ing of periodic multi-layers of thylakoid tissues. Conversely, bizonoplasts have been identified in a single plant species, S.
erythropus (figure 11) [99,100]. They look like a mix of conventional thylakoid tissue present in typical irregular chloroplasts
across many plants and very organized iridoplasts. The unique ordered photonic structures of iridoplasts and bizonoplasts
result in enhanced light absorption in the green part of the electromagnetic spectrum due to the slow-light effect occurring
at the red edge of the photonic bandgap of the multi-layered structures. This increased absorption aligns with the incident
light environment of these canopy-adapted plants. It leads to an enhanced quantum yield in low-light conditions, bolstering
photosynthesis when compared with normal chloroplasts [35,95–97].

In the ethereal heights of the Alps, the edelweiss flower, Leontopodium nivale, unveils a captivating defence mechanism
against intense UV radiation. Located within the woolly cover layer of its bracts (namely, the downy-white ‘petals’ of the
edelweiss that are specialized leaves), an intersecting pattern of transparent filaments, displaying some faint iridescence, can be
observed by microscopy (figure 12). These filaments exhibit variations in the diameter and morphology of their cross-sections.
They are hollow with parallel corrugations running along the main axis of the filaments with a period of ca 180 nm. The
spectral reflectance is rather low from 300 to 400 nm and abruptly increases around 400 nm to form a plateau at ca 65%. This
optical behaviour corresponds to some strong absorption in the near UV range. This intricate filamentary architecture, akin to
a two-dimensional corrugated dielectric slab, emerges as a UV-selective waveguide coupling device. Fano resonances within
these filaments facilitate the transfer of incident UV waves. The filaments, characterized by a broadband angular response, act
as conduits for UV photon energy, efficiently dissipating it along the hollow guides, as the filament materials absorb UV. This
ingenious strategy protects the delicate cellular tissue beneath.

3. Infrared absorbers inspired by natural photonic structures
The underlying mechanisms of various natural structures have been elucidated thus far, as presented in the previous section.
If their potential for energy harvesting remains largely untapped, several devices have been suggested through a bioinspiration
approach [14,15,17]. In addition to their eco-friendly and sustainable materials composition and fabrication, these natural
structures present other benefits concerning current alternatives such as their thinness and lightness. They can improve the
energy yield of PV cells and solar panels [29,47,102], passive radiative cooling [37,103–106], photocatalysis [45,107–109] or even
the efficiency of electromagnetic camouflage, and the capture of stray light in telescopes. These bioinspired applications are
made of different materials and may require a different range of wavelengths as well as even higher light-intensity absorption.
That is why their design often involves additional optimization, resulting in structures exhibiting a similar but not exact
morphology with different dimensions. Changing the wavelength range implies the adjustment of the structure dimensions due
to the scalability of Maxwell’s equations.

3.1. Bioinspired antireflective coatings: from moth-eye and cicada-wing templates to functional applications
As described in §2.1, insects employ antireflective features as crucial characteristics in their crypsis strategy. The nipple arrays
found on some of their eye and wing surfaces have been replicated to create bioinspired antireflective coatings applicable
across various uses, including solar panels, antiglare glasses, screens, light-sensitive detectors, telescopes, thermochromic smart
windows and camera lenses [14,69,102,110–117].

Bottom-up nanofabrication approaches such as self-assembled spherical nanoparticles in non-close-packed hexagonal arrays
have been used to mimic moth-eye structures (figure 13) [110]. Simulations indicated that non-close-packed structures result in
lower reflectance at wavelengths longer than the nipple interdistance, affirming the suitability of the natural moth-eye design

(a) (b) (c)

Figure 10. The petals of viola flowers (a) feature cone-shaped structures adorned with nanowrinkles (b,c). The cones and nanowrinkles collectively play a role in the
augmentation of light harvesting. These figures were reproduced from [88], with permission from the American Chemical Society.
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for highly efficient antireflective devices. Spin-coating deposition of colloidal suspensions of silica particles (360 nm in diameter)
and their shear alignment allowed fabrication of a template that served as a mould for casting some polydimethylsiloxane
(PDMS). This PDMS mould was subsequently pressed onto an ethoxylated trimethylolpropane triacrylate (ETPTA) [110] or a
perfluoroacrylate polymer [118] layer lying on a glass substrate (figure 13a–d). These monomer films were then polymerized
with a pulsed UV light curing system. Such biomimetic structures demonstrated outstanding low reflectance of less than 0.5%
across the visible spectrum (figure 13e) [110,118]. Similarly, such spin-coated monolayer silica colloids were utilized as a mask in
a reactive ion etching (RIE) process of silicon wafers with SF6 [111] and of gallium antimonide (GaSb) substrates with Cl2 [102],
reducing reflectance to less than 5% in the visible-near-IR range (concerning ca 40% for unstructured wafers) [102,111]. Such
biomimetic structures appeared easy to fabricate on solar and TPV cells.

Similarly, top-down synthesis techniques such as nanoimprint lithography (NIL) were employed to develop efficient and
cost-effective antireflective coatings inspired by nature. For instance, cicada wings were directly utilized as natural stamps,
leveraging the wing chitinous material with commendable thermomechanical characteristics (figure 14a) [69,112]. This material
can indeed be heated up to 200°C without any damage. After heating, a poly(methyl methacrylate) (PMMA) film may be
pressed onto the biological template (figure 14b–d) [69]. The negative replica was transferred to a silicon substrate using the
array of nanowells in PMMA as a mask for RIE. Upon removal of PMMA, the resulting patterned surface demonstrated
antireflective properties, evident from its dark visual appearance [69]. If the structured PMMA film was employed as a mould
for gold thermodeposition instead of a mask for RIE, a perfect replica of gold hexagonal nanopillars was produced (figure 14e,f)
[69]. Alternatively, a PMMA replica was fabricated through a modified procedure [112]: a first negative replica was obtained
from the thermodeposition of gold onto the natural photonic structures of the wings. It was used as a mould to cast PMMA,
which was subsequently peeled off [112]. The antireflective capability of the replicated PMMA film was notable. The PMMA
film’s reflectance was found to be decreased from approximately 6% to about 2% across the visible-near-IR range due to the
unique nipple array [112].

3.2. Advances in bioinspired solar light harvesting: beyond petals, leaves and butterfly wings
The photonic structures found in the petals and leaves occurring in the integuments of certain plants have informed the
development of improved bioinspired light-absorbing structures (figure 15a,b) [34,88,107,108,119,120]. From enhancing the
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efficiency of organic solar cells to improving photocatalysis and contributing to artificial photosynthesis systems, these
bioinspired designs continue to pave the way for sustainable and innovative energy solutions.

For instance, the microstructures of the epidermal cells of some rose species inspired a polymer thin film replica that was
integrated into a solar cell [34]. The biomimetic coating demonstrated a significant reduction in reflectance over the entire
spectral range, particularly at grazing incidence, with a remarkable 13 and 44% increase in the solar cell’s short-circuit current
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Figure 13. Nipple array structures observed on moth eye were replicated using 360 nm size silica particles, observed in (a–c) by atomic force microscopy (AFM)
without etching (a) as well as with 20 s (b) and 45 s (c) reactive ion etching (RIE) etching times. This etching process gave rise to different profiles (d). This bioinspired
structuring gives rise to a significant reduction in light reflection at normal incidence (e). Solid and dotted curves are respectively experimental and simulated
reflectance spectra with a flat unstructured poly(ethoxylated trimethylolpropane triacrylate) (PETPTA) surface (black curves), 110 nm size hemispherical caps (light
grey curves) fabricated with 20 s RIE etching, and 180 nm size hemispherical caps (dark grey curves) fabricated with 45 s RIE etching. These figures were reproduced
from [110], with permission from AIP Publishing.
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permission from John Wiley and Sons.
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at normal and grazing incidence, respectively (figure 15c,d). These properties are of high interest for solar cell efficiency
with respect to the Sun’s movement throughout the day. The dome profile of the micropapillae on the petal surface was
demonstrated to play the role of microlenses, lengthening the optical path of light rays within the plant integuments. This dual
functionality of efficient antireflection and light trapping is crucial for enhancing the performance of thin-film organic solar
cells, addressing issues of low optical absorption and spectral drops due to Fabry–Pérot interference.

While the petals of roses offer a compelling template for biomimetic light harvesting, the sophistication of plant leaves
provides an even more complex blueprint. The thin and soft leaves of Vallisneria spp., aquatic grass plants, also known as
eelgrass are a very informative study case for bioinspiration [107]. The hierarchical architecture of these leaves includes lens-like
epidermal cells, a so-called palisade parenchyma functioning as optical waveguides, and a spongy disordered layer with

60

40

20

0

0.8

0.6

0.4

0.2

0
300 400 500 600 700 800400 600 800 1000 1200

Wavelength [nm] Wavelength [nm]

R
efl

ec
ti

o
n

 f
ac

to
r 

[%
]

E
Q

E

Rose structure - 20º incidence Rose structure

Rose structure - 80º incidence
Flat resist - 20º incidence

Flat resist - 80º incidence Rose structure - 20º incidence

Rose structure - 80º incidence
Flat resist - 20º incidence

Flat resist - 80º incidence

(a) (b)

(c) (d)

Glass

Absorber
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Figure 16. (I) SiO2 negative replica of the black wing scales of Trogonoptera brookiana butterfly (a) was synthesized through a sol–gel method [29]. The scales were
infiltrated with a precursor solution (b) that was heated for solidification (c). The scales were removed by etching (d), leaving a negative replica. (II) A sol–gel method
was also used to fabricate a bismuth vanadate (BVO) replica (b,d) of the wing scales of Papilio nireus (a,c) [45]. Gold nanoantennas (abbreviated ‘Au NR’) (e,f) were
loaded into the BVO wing scales (g,h). Insets in (g) are a simplified sketch (top) and a higher-magnification electron micrograph (bottom). The fabrication process
from the butterfly wing scale to the Au NR-loaded BVO hybrid photonic–plasmonic structure is summarized in (i). (III) This hybrid structure gave rise to the best
photocatalytic activity [45], as demonstrated by the CO2 evolution of isopropyl alcohol (IPA) degradation as a function of illumination time for the Au NR-loaded BVO
hybrid photonic–plasmonic structure (‘BVO wing + Au NRs’), unstructured BVO powder (‘Powder counterparts’), unstructured BVO slab with Au NRs (‘BVO slab +
Au NRs’), and bio-templated BVO photonic structure (‘BVO wing’). (IV) A nanostructured hydrogenated amorphous silicon (a-Si:H) film inspired by the wing scales of
Pachliopta aristolochiae (a) gave rise to enhanced light harvesting at normal incidence (b) and with non-zero incidence angles (c) [47]. These figures were reproduced
from [29] (I), [45] (II,III) and [47] (IV), Licenses CC-BY-4.0, CC-BY and CC-BY-NC, respectively.
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intertwined veins giving rise to optical multi-scattering and extending the optical path length. Utilizing a sol–gel method, a
silica and titania mimic of these leaves was templated for photocatalytic application [107]. The resulting Ti–Si catalyst exhibited
a threefold higher rate constant for the degradation reaction of methylene blue exposed to UV compared with a commercial
TiO2 catalyst. The macroporosity and enhanced light-scattering properties of Vallisneria leaf structure made it an ideal template
for photocatalysis, showcasing the potential for biomimicry in advancing solar-driven environmental applications.

As one could have expected, butterfly wings have naturally inspired the design of visible and IR light absorbers such as
a SiO2 negative replica of the black wing scales of the Trogonoptera brookiana butterfly that exhibits enhanced light trapping
properties (figure 16(i)) [29]. The solar energy loss of this replica, namely, the integrated solar light intensity reflected by
the replica in the 400–900 nm range, was found to be 22.6% of the one of a SiO2 flat surface. Similarly, a hybrid photonic–plas-
monic structure was fabricated by bio-templating the black forewings of Troides helena [30]. Silver spherical nanoparticles with
various diameters (10, 20, 40, 60 and 80 nm) were deposited on the wings before the chitin structure was carbonized. An
enhanced absorption was measured and simulated in the near- and mid-IR ranges. It results from the plasmon resonance of
the silver nanoparticles and the coherent coupling among adjacent nanoparticles within the photonic architecture of T. helena.
Such a hybrid photonic–plasmonic architecture was designed for photocatalytic applications while taking inspiration from P.
nireus (figure 16(ii)) [45]. It consisted of gold nanoantennas located on a bismuth vanadate (BVO) photocatalytic unit with
the architecture of P. nireus black wings. This architecture was fabricated through a sol–gel method. Both experiments and
simulations demonstrated the enhanced photocatalytic activity arising from the 25% increase in light harvesting within the
700–1200 nm range and the 3.5-fold enhancement of the electric-field intensity of localized surface plasmons (figure 16(iii)) [45].
Whereas these three artificial structures were fabricated by bottom-up methods, a nanostructured absorber film with disordered
holes was synthesized as a mimic of the disordered black wing scales of the P. aristolochiae butterfly (figure 16(vi)) [47]. Using
phase separation of a two-polymer mixture, a hydrogenated amorphous silicon (a-Si:H) film was patterned for PV applications.
The structure exhibited a relative integrated absorption over the range 450–800 nm of 93 and 207%, with a 0° and a 50° incidence
angle with respect to the normal to the film surface, respectively [47].

4. Conclusions
Photonic structures occurring in the integuments of living organisms such as arthropods, birds and plants are very sophistica-
ted optical devices that give rise to various striking optical effects, including UV, visible and IR radiation management and
absorption enhancement. They occur in biological tissues encompassing butterfly wings, beetle elytra, bird feathers, spider
cuticle, viper skin, as well as plant leaves and petals. These phenomena are often crucial for the survival of animal and
plant species. This review article also showcased the promising potential of bioinspiration in the field of energy capture
and conversion. Exploiting light trapping, impedance matching or antireflection observed in natural structures is indeed
highly interesting, given the development of bioinspired energy-efficient applications such as PV and TPV cells, TEG, artificial
photosynthesis and photocatalysis. With the optimization of the efficiency of such applications, these advances inspire future
research and innovation in the field of bioinspired energy solutions. Ultimately, this research paves the way for a more
sustainable and environmentally conscious future by harnessing the beauty of nature’s designs to meet humanity’s energy
needs.
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